Robust Online Convex Optimization for Disturbance Rejection

11 May 2024  ·  Joyce Lai, Peter Seiler ·

Online convex optimization (OCO) is a powerful tool for learning sequential data, making it ideal for high precision control applications where the disturbances are arbitrary and unknown in advance. However, the ability of OCO-based controllers to accurately learn the disturbance while maintaining closed-loop stability relies on having an accurate model of the plant. This paper studies the performance of OCO-based controllers for linear time-invariant (LTI) systems subject to disturbance and model uncertainty. The model uncertainty can cause the closed-loop to become unstable. We provide a sufficient condition for robust stability based on the small gain theorem. This condition is easily incorporated as an on-line constraint in the OCO controller. Finally, we verify via numerical simulations that imposing the robust stability condition on the OCO controller ensures closed-loop stability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here