Robust Multivariate Detection and Estimation with Fault Frequency Content Information

7 Oct 2023  ·  Jingwei Dong, Kaikai Pan, Sergio Pequito, Peyman Mohajerin Esfahani ·

This paper studies the problem of fault detection and estimation (FDE) for linear time-invariant (LTI) systems with a particular focus on frequency content information of faults, possibly as multiple disjoint continuum ranges, and under both disturbances and stochastic noise. To ensure the worst-case fault sensitivity in the considered frequency ranges and mitigate the effects of disturbances and noise, an optimization framework incorporating a mixed H_/H2 performance index is developed to compute the optimal detection filter. Moreover, a thresholding rule is proposed to guarantee both the false alarm rate (FAR) and the fault detection rate (FDR). Next, shifting attention to fault estimation in specific frequency ranges, an exact reformulation of the optimal estimation filter design using the restricted Hinf performance index is derived, which is inherently non-convex. However, focusing on finite frequency samples and fixed poles, a lower bound is established via a highly tractable quadratic programming (QP) problem. This lower bound together with an alternating optimization (AO) approach to the original estimation problem leads to a suboptimality gap for the overall estimation filter design. The effectiveness of the proposed approaches is validated through a synthetic non-minimum phase system and an application of the multi-area power system.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods