Robust Data-Enabled Predictive Control: Tractable Formulations and Performance Guarantees

15 May 2021  ·  Linbin Huang, Jianzhe Zhen, John Lygeros, Florian Dörfler ·

We introduce a general framework for robust data-enabled predictive control (DeePC) for linear time-invariant (LTI) systems. The proposed framework enables us to obtain model-free optimal control for LTI systems based on noisy input/output data. More specifically, robust DeePC solves a min-max optimization problem to compute the optimal control sequence that is resilient to all possible realizations of the uncertainties in the input/output data within a prescribed uncertainty set. We present computationally tractable reformulations of the min-max problem with various uncertainty sets. Furthermore, we show that even though an accurate prediction of the future behavior is unattainable in practice due to inaccessibility of the perfect input/output data, the obtained robust optimal control sequence provides performance guarantees for the actually realized input/output cost. We further show that the robust DeePC generalizes and robustifies the regularized DeePC (with quadratic regularization or 1-norm regularization) proposed in the literature. Finally, we demonstrate the performance of the proposed robust DeePC algorithm on high-fidelity, nonlinear, and noisy simulations of a grid-connected power converter system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here