RFEye in the Sky

7 Nov 2020  ·  Maqsood Ahamed Abdul Careem, Jorge Gomez, Dola Saha, Aveek Dutta ·

We introduce RFEye, a generalized technique to locate signals independent of the waveform, using a single Unmanned Aerial Vehicle (UAV) equipped with only one omnidirectional antenna. This is achieved by acquiring signals from uncoordinated positions within a sphere of 1-meter radius at two nearby locations and formulating an asynchronous, distributed receiver beamforming at the UAV to compute the Direction of Arrival (DoA) from the unknown transmitter. The proposed method includes four steps: 1) Blind detection and extraction of unique signature in the signal to be localized, 2) Asynchronous signal acquisition and conditioning, 3) DoA calculation by creating a virtual distributed antenna array at UAV and 4) Obtaining position fix of emitter using DoA from two locations. These steps are analyzed for various sources of error, computational complexity and compared with widely used signal subspace-based DoA estimation algorithms. RFEye is implemented using an Intel-Aero UAV, equipped with a USRP B205 software-defined radio to acquire signals from a ground emitter. Practical outdoor experiments show that RFEye achieves a median accuracy of 1.03m in 2D and 2.5m in 3D for Wi-Fi, and 1.15m in 2D and 2.7m in 3D for LoRa (Long Range) waveforms, and is robust to external factors like wind and UAV position errors.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here