Reward Design via Online Gradient Ascent

Recent work has demonstrated that when artificial agents are limited in their ability to achieve their goals, the agent designer can benefit by making the agent's goals different from the designer's. This gives rise to the optimization problem of designing the artificial agent's goals---in the RL framework, designing the agent's reward function. Existing attempts at solving this optimal reward problem do not leverage experience gained online during the agent's lifetime nor do they take advantage of knowledge about the agent's structure. In this work, we develop a gradient ascent approach with formal convergence guarantees for approximately solving the optimal reward problem online during an agent's lifetime. We show that our method generalizes a standard policy gradient approach, and we demonstrate its ability to improve reward functions in agents with various forms of limitations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here