Revising clustering and small-worldness in brain networks

28 Jan 2024  ·  Tanguy Fardet, Emmanouil Giannakakis, Lukas Paulun, Anna Levina ·

As more connectome data become available, the question of how to best analyse the structure of biological neural networks becomes increasingly pertinent. In brain networks, knowing that two areas are connected is often not sufficient, as the directionality and weight of the connection affect the dynamics in crucial ways. Still, the methods commonly used to estimate network properties, such as clustering and small-worldness, usually disregard features encoded in the directionality and strength of network connections. To address this issue, we propose using fully-weighted and directed clustering measures that provide higher sensitivity to non-random structural features. Using artificial networks, we demonstrate the problems with methods routinely used in the field and how fully-weighted and directed methods can alleviate them. Specifically, we highlight their robustness to noise and their ability to address thresholding issues, particularly in inferred networks. We further apply our method to the connectomes of different species and uncover regularities and correlations between neuronal structures and functions that cannot be detected with traditional clustering metrics. Finally, we extend the notion of small-worldness in brain networks to account for weights and directionality and show that some connectomes can no longer be considered ``small-world''. Overall, our study makes a case for a combined use of fully-weighted and directed measures to deal with the variability of brain networks and suggests the presence of complex patterns in neural connectivity that can only be revealed using such methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here