Restricted Boltzmann Machines for galaxy morphology classification with a quantum annealer

14 Nov 2019  ·  João Caldeira, Joshua Job, Steven H. Adachi, Brian Nord, Gabriel N. Perdue ·

We present the application of Restricted Boltzmann Machines (RBMs) to the task of astronomical image classification using a quantum annealer built by D-Wave Systems. Morphological analysis of galaxies provides critical information for studying their formation and evolution across cosmic time scales. We compress galaxy images using principal component analysis to fit a representation on the quantum hardware. Then, we train RBMs with discriminative and generative algorithms, including contrastive divergence and hybrid generative-discriminative approaches, to classify different galaxy morphologies. The methods we compare include Quantum Annealing (QA), Markov Chain Monte Carlo (MCMC) Gibbs Sampling, and Simulated Annealing (SA) as well as machine learning algorithms like gradient boosted decision trees. We find that RBMs implemented on D-Wave hardware perform well, and that they show some classification performance advantages on small datasets, but they don't offer a broadly strategic advantage for this task. During this exploration, we analyzed the steps required for Boltzmann sampling with the D-Wave 2000Q, including a study of temperature estimation, and examined the impact of qubit noise by comparing and contrasting the original D-Wave 2000Q to the lower-noise version recently made available. While these analyses ultimately had minimal impact on the performance of the RBMs, we include them for reference.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here