Reproducible Pruning System on Dynamic Natural Plants for Field Agricultural Robots

26 Aug 2020  ·  Sunny Katyara, Fanny Ficuciello, Darwin G. Caldwell, Fei Chen, Bruno Siciliano ·

Pruning is the art of cutting unwanted and unhealthy plant branches and is one of the difficult tasks in the field robotics. It becomes even more complex when the plant branches are moving. Moreover, the reproducibility of robot pruning skills is another challenge to deal with due to the heterogeneous nature of vines in the vineyard. This research proposes a multi-modal framework to deal with the dynamic vines with the aim of sim2real skill transfer. The 3D models of vines are constructed in blender engine and rendered in simulated environment as a need for training the robot. The Natural Admittance Controller (NAC) is applied to deal with the dynamics of vines. It uses force feedback and compensates the friction effects while maintaining the passivity of system. The faster R-CNN is used to detect the spurs on the vines and then statistical pattern recognition algorithm using K-means clustering is applied to find the effective pruning points. The proposed framework is tested in simulated and real environments.

PDF Abstract
No code implementations yet. Submit your code now


Robotics Systems and Control Systems and Control


  Add Datasets introduced or used in this paper