A Robust Test for Elliptical Symmetry

5 Jun 2020  ·  Ilya Soloveychik ·

Most signal processing and statistical applications heavily rely on specific data distribution models. The Gaussian distributions, although being the most common choice, are inadequate in most real world scenarios as they fail to account for data coming from heavy-tailed populations or contaminated by outliers. Such problems call for the use of Robust Statistics. The robust models and estimators are usually based on elliptical populations, making the latter ubiquitous in all methods of robust statistics. To determine whether such tools are applicable in any specific case, goodness-of-fit (GoF) tests are used to verify the ellipticity hypothesis. Ellipticity GoF tests are usually hard to analyze and often their statistical power is not particularly strong. In this work, assuming the true covariance matrix is unknown we design and rigorously analyze a robust GoF test consistent against all alternatives to ellipticity on the unit sphere. The proposed test is based on Tyler's estimator and is formulated in terms of easily computable statistics of the data. For its rigorous analysis, we develop a novel framework based on the exchangeable random variables calculus introduced by de Finetti. Our findings are supported by numerical simulations comparing them to other popular GoF tests and demonstrating the significantly higher statistical power of the suggested technique.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here