Reinforcement learning for pursuit and evasion of microswimmers at low Reynolds number

16 Jun 2021  ·  Francesco Borra, Luca Biferale, Massimo Cencini, Antonio Celani ·

We consider a model of two competing microswimming agents engaged in a pursue-evasion task within a low-Reynolds-number environment. Agents can only perform simple maneuvers and sense hydrodynamic disturbances, which provide ambiguous (partial) information about the opponent's position and motion. We frame the problem as a zero-sum game: The pursuer has to capture the evader in the shortest time, while the evader aims at deferring capture as long as possible. We show that the agents, trained via adversarial reinforcement learning, are able to overcome partial observability by discovering increasingly complex sequences of moves and countermoves that outperform known heuristic strategies and exploit the hydrodynamic environment.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here