Regularization for Cox's proportional hazards model with NP-dimensionality

25 Oct 2010  ·  Jelena Bradic, Jianqing Fan, Jiancheng Jiang ·

High throughput genetic sequencing arrays with thousands of measurements per sample and a great amount of related censored clinical data have increased demanding need for better measurement specific model selection. In this paper we establish strong oracle properties of nonconcave penalized methods for nonpolynomial (NP) dimensional data with censoring in the framework of Cox's proportional hazards model. A class of folded-concave penalties are employed and both LASSO and SCAD are discussed specifically. We unveil the question under which dimensionality and correlation restrictions can an oracle estimator be constructed and grasped. It is demonstrated that nonconcave penalties lead to significant reduction of the "irrepresentable condition" needed for LASSO model selection consistency. The large deviation result for martingales, bearing interests of its own, is developed for characterizing the strong oracle property. Moreover, the nonconcave regularized estimator, is shown to achieve asymptotically the information bound of the oracle estimator. A coordinate-wise algorithm is developed for finding the grid of solution paths for penalized hazard regression problems, and its performance is evaluated on simulated and gene association study examples.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here