Regularization and False Alarms Quantification: Two Sides of the Explainability Coin

2 Dec 2020  ·  Nima Safaei, Pooria Assadi ·

Regularization is a well-established technique in machine learning (ML) to achieve an optimal bias-variance trade-off which in turn reduces model complexity and enhances explainability. To this end, some hyper-parameters must be tuned, enabling the ML model to accurately fit the unseen data as well as the seen data. In this article, the authors argue that the regularization of hyper-parameters and quantification of costs and risks of false alarms are in reality two sides of the same coin, explainability. Incorrect or non-existent estimation of either quantities undermines the measurability of the economic value of using ML, to the extent that might make it practically useless.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here