Reconfigurable Intelligent Surface-Aided Dual-Function Radar and Communication Systems With MU-MIMO Communication

In this paper, we investigate an reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system. Our objective is to maximize the achievable sum rate of the multi-antenna communication users through the joint active and passive beamforming. {Specifically}, the weighted minimum mean-square error (WMMSE) method is { first} used to reformulate the original problem into an equivalent one. Then, we utilize an alternating optimization (AO) { algorithm} to decouple the optimization variables and decompose this challenging problem into two subproblems. Given reflecting coefficients, a penalty-based algorithm is utilized to deal with the non-convex radar signal-to-noise ratio (SNR) constraints. For the given beamforming matrix of the BS, we apply majorization-minimization (MM) to transform the problem into a quadratic constraint quadratic programming (QCQP) problem, which is ultimately solved using a semidefinite relaxation (SDR)-based algorithm. Simulation results illustrate the advantage of deploying RIS in the considered multi-user MIMO (MU-MIMO) ISAC systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here