Randomly Weighted Neuromodulation in Neural Networks Facilitates Learning of Manifolds Common Across Tasks

17 Nov 2023  ·  Jinyung Hong, Theodore P. Pavlic ·

Geometric Sensitive Hashing functions, a family of Local Sensitive Hashing functions, are neural network models that learn class-specific manifold geometry in supervised learning. However, given a set of supervised learning tasks, understanding the manifold geometries that can represent each task and the kinds of relationships between the tasks based on them has received little attention. We explore a formalization of this question by considering a generative process where each task is associated with a high-dimensional manifold, which can be done in brain-like models with neuromodulatory systems. Following this formulation, we define \emph{Task-specific Geometric Sensitive Hashing~(T-GSH)} and show that a randomly weighted neural network with a neuromodulation system can realize this function.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here