Quantum Machine Learning Tensor Network States

6 Apr 2018  ·  Andrey Kardashin, Alexey Uvarov, Jacob Biamonte ·

Tensor network algorithms seek to minimize correlations to compress the classical data representing quantum states. Tensor network algorithms and similar tools---called tensor network methods---form the backbone of modern numerical methods used to simulate many-body physics and have a further range of applications in machine learning. Finding and contracting tensor network states is a computational task which quantum computers might be used to accelerate. We present a quantum algorithm which returns a classical description of a rank-$r$ tensor network state satisfying an area law and approximating an eigenvector given black-box access to a unitary matrix. Our work creates a bridge between several contemporary approaches, including tensor networks, the variational quantum eigensolver (VQE), quantum approximate optimization (QAOA), and quantum computation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here