Push Stricter to Decide Better: A Class-Conditional Feature Adaptive Framework for Improving Adversarial Robustness

1 Dec 2021  ·  Jia-Li Yin, Lehui Xie, Wanqing Zhu, Ximeng Liu, Bo-Hao Chen ·

In response to the threat of adversarial examples, adversarial training provides an attractive option for enhancing the model robustness by training models on online-augmented adversarial examples. However, most of the existing adversarial training methods focus on improving the robust accuracy by strengthening the adversarial examples but neglecting the increasing shift between natural data and adversarial examples, leading to a dramatic decrease in natural accuracy. To maintain the trade-off between natural and robust accuracy, we alleviate the shift from the perspective of feature adaption and propose a Feature Adaptive Adversarial Training (FAAT) optimizing the class-conditional feature adaption across natural data and adversarial examples. Specifically, we propose to incorporate a class-conditional discriminator to encourage the features become (1) class-discriminative and (2) invariant to the change of adversarial attacks. The novel FAAT framework enables the trade-off between natural and robust accuracy by generating features with similar distribution across natural and adversarial data, and achieve higher overall robustness benefited from the class-discriminative feature characteristics. Experiments on various datasets demonstrate that FAAT produces more discriminative features and performs favorably against state-of-the-art methods. Codes are available at https://github.com/VisionFlow/FAAT.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here