Probability Distribution on Full Rooted Trees

27 Sep 2021  ·  Yuta Nakahara, Shota Saito, Akira Kamatsuka, Toshiyasu Matsushima ·

The recursive and hierarchical structure of full rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. In most of these cases, the full rooted tree is not a random variable; as such, model selection to avoid overfitting becomes problematic. A method to solve this problem is to assume a prior distribution on the full rooted trees. This enables the optimal model selection based on the Bayes decision theory. For example, by assigning a low prior probability to a complex model, the maximum a posteriori estimator prevents the selection of the complex one. Furthermore, we can average all the models weighted by their posteriors. In this paper, we propose a probability distribution on a set of full rooted trees. Its parametric representation is suitable for calculating the properties of our distribution using recursive functions, such as the mode, expectation, and posterior distribution. Although such distributions have been proposed in previous studies, they are only applicable to specific applications. Therefore, we extract their mathematically essential components and derive new generalized methods to calculate the expectation, posterior distribution, etc.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here