Paper

Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning

Data augmentation is widely used to mitigate data bias in the training dataset. However, data augmentation exposes machine learning models to privacy attacks, such as membership inference attacks. In this paper, we propose an effective combination of data augmentation and machine unlearning, which can reduce data bias while providing a provable defense against known attacks. Specifically, we maintain the fairness of the trained model with diffusion-based data augmentation, and then utilize multi-shard unlearning to remove identifying information of original data from the ML model for protection against privacy attacks. Experimental evaluation across diverse datasets demonstrates that our approach can achieve significant improvements in bias reduction as well as robustness against state-of-the-art privacy attacks.

Results in Papers With Code
(↓ scroll down to see all results)