Predictive Reliability Assessment of Distribution Grids with Residential Distributed Energy Resources

11 Dec 2023  ·  Arun Kumar Karngala, Chanan Singh, Le Xie ·

Distribution system end users are transforming from passive to active participants, marked by the push towards widespread adoption of edge-level Distributed Energy Resources (DERs). This paper addresses the challenges in distribution system planning arising from these dynamic changes. We introduce a bottom-up probabilistic approach that integrates these edge-level DERs into the reliability evaluation process. Our methodology leverages joint probability distributions to characterize and model the penetration of rooftop photovoltaic (PV) systems and energy storage across a distribution network at the individual residential level. Employing a scenario-based approach, we showcase the application of our probabilistic method using a Monte Carlo Simulation process to assess average system reliability indices and their variations at the user level. To validate our approach, we applied this methodology to the RBTS test system across various adoption scenarios, effectively showcasing the capability of our proposed method in quantifying the variation in end-user reliability indices for each scenario within the distribution system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here