Predictive and diagnosis models of stroke from hemodynamic signal monitoring

30 May 2023  ·  Luis García-Terriza, José L. Risco-Martín, Gemma Reig Roselló, José L. Ayala ·

This work presents a novel and promising approach to the clinical management of acute stroke. Using machine learning techniques, our research has succeeded in developing accurate diagnosis and prediction real-time models from hemodynamic data. These models are able to diagnose stroke subtype with 30 minutes of monitoring, to predict the exitus during the first 3 hours of monitoring, and to predict the stroke recurrence in just 15 minutes of monitoring. Patients with difficult access to a \acrshort{CT} scan, and all patients that arrive at the stroke unit of a specialized hospital will benefit from these positive results. The results obtained from the real-time developed models are the following: stroke diagnosis around $98\%$ precision ($97.8\%$ Sensitivity, $99.5\%$ Specificity), exitus prediction with $99.8\%$ precision ($99.8\%$ Sens., $99.9\%$ Spec.) and $98\%$ precision predicting stroke recurrence ($98\%$ Sens., $99\%$ Spec.).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here