Prediction of protein allosteric signalling pathways and functional residues through paths of optimised propensity

14 Jul 2022  ·  Nan Wu, Sophia N. Yaliraki, Mauricio Barahona ·

Allostery commonly refers to the mechanism that regulates protein activity through the binding of a molecule at a different, usually distal, site from the orthosteric site. The omnipresence of allosteric regulation in nature and its potential for drug design and screening render the study of allostery invaluable. Nevertheless, challenges remain as few computational methods are available to effectively predict allosteric sites, identify signalling pathways involved in allostery, or to aid with the design of suitable molecules targeting such sites. Recently, bond-to-bond propensity analysis has been shown successful at identifying allosteric sites for a large and diverse group of proteins from knowledge of the orthosteric sites and its ligands alone by using network analysis applied to energy-weighted atomistic protein graphs. To address the identification of signalling pathways, we propose here a method to compute and score paths of optimised propensity that link the orthosteric site with the identified allosteric sites, and identifies crucial residues that contribute to those paths. We showcase the approach with three well-studied allosteric proteins: h-Ras, caspase-1, and 3-phosphoinositide-dependent kinase-1 (PDK1). Key residues in both orthosteric and allosteric sites were identified and showed agreement with experimental results, and pivotal signalling residues along the pathway were also revealed, thus providing alternative targets for drug design. By using the computed path scores, we were also able to differentiate the activity of different allosteric modulators.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here