Prediction of Drug-Induced TdP Risks Using Machine Learning and Rabbit Ventricular Wedge Assay

14 Jan 2022  ·  Nan Miles Xi, Dalong Patrick Huang ·

The evaluation of drug-induced Torsades de pointes (TdP) risks is crucial in drug safety assessment. In this study, we discuss machine learning approaches in the prediction of drug-induced TdP risks using preclinical data. Specifically, the random forest model was trained on the dataset generated by the rabbit ventricular wedge assay. The model prediction performance was measured on 28 drugs from the Comprehensive In Vitro Proarrhythmia Assay initiative. Leave-one-drug-out cross-validation provided an unbiased estimation of model performance. Stratified bootstrap revealed the uncertainty in the asymptotic model prediction. Our study validated the utility of machine learning approaches in predicting drug-induced TdP risks from preclinical data. Our methods can be extended to other preclinical protocols and serve as a supplementary evaluation in drug safety assessment.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here