PINCH: An Adversarial Extraction Attack Framework for Deep Learning Models

13 Sep 2022  ·  William Hackett, Stefan Trawicki, Zhengxin Yu, Neeraj Suri, Peter Garraghan ·

Adversarial extraction attacks constitute an insidious threat against Deep Learning (DL) models in-which an adversary aims to steal the architecture, parameters, and hyper-parameters of a targeted DL model. Existing extraction attack literature have observed varying levels of attack success for different DL models and datasets, yet the underlying cause(s) behind their susceptibility often remain unclear, and would help facilitate creating secure DL systems. In this paper we present PINCH: an efficient and automated extraction attack framework capable of designing, deploying, and analyzing extraction attack scenarios across heterogeneous hardware platforms. Using PINCH, we perform extensive experimental evaluation of extraction attacks against 21 model architectures to explore new extraction attack scenarios and further attack staging. Our findings show (1) key extraction characteristics whereby particular model configurations exhibit strong resilience against specific attacks, (2) even partial extraction success enables further staging for other adversarial attacks, and (3) equivalent stolen models uncover differences in expressive power, yet exhibit similar captured knowledge.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here