Physics-informed semantic inpainting: Application to geostatistical modeling

19 Sep 2019  ·  Qiang Zheng, Lingzao Zeng, Zhendan Cao, George Em. Karniadakis ·

A fundamental problem in geostatistical modeling is to infer the heterogeneous geological field based on limited measurements and some prior spatial statistics. Semantic inpainting, a technique for image processing using deep generative models, has been recently applied for this purpose, demonstrating its effectiveness in dealing with complex spatial patterns. However, the original semantic inpainting framework incorporates only information from direct measurements, while in geostatistics indirect measurements are often plentiful. To overcome this limitation, here we propose a physics-informed semantic inpainting framework, employing the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and jointly incorporating the direct and indirect measurements by exploiting the underlying physical laws. Our simulation results for a high-dimensional problem with 512 dimensions show that in the new method, the physical conservation laws are satisfied and contribute in enhancing the inpainting performance compared to using only the direct measurements.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here