Physics-enhanced deep surrogates for partial differential equations

10 Nov 2021  ·  Raphaël Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, Steven G. Johnson ·

Many physics and engineering applications demand Partial Differential Equations (PDE) property evaluations that are traditionally computed with resource-intensive high-fidelity numerical solvers. Data-driven surrogate models provide an efficient alternative but come with a significant cost of training. Emerging applications would benefit from surrogates with an improved accuracy-cost tradeoff, while studied at scale. Here we present a "physics-enhanced deep-surrogate" ("PEDS") approach towards developing fast surrogate models for complex physical systems, which is described by PDEs. Specifically, a combination of a low-fidelity, explainable physics simulator and a neural network generator is proposed, which is trained end-to-end to globally match the output of an expensive high-fidelity numerical solver. Experiments on three exemplar testcases, diffusion, reaction-diffusion, and electromagnetic scattering models, show that a PEDS surrogate can be up to 3$\times$ more accurate than an ensemble of feedforward neural networks with limited data ($\approx 10^3$ training points), and reduces the training data need by at least a factor of 100 to achieve a target error of 5%. Experiments reveal that PEDS provides a general, data-driven strategy to bridge the gap between a vast array of simplified physical models with corresponding brute-force numerical solvers modeling complex systems, offering accuracy, speed, data efficiency, as well as physical insights into the process.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here