Performance Evaluation of Selective Fixed-filter Active Noise Control based on Different Convolutional Neural Networks

17 Aug 2022  ·  Zhengding Luo, Dongyuan Shi, Woon-Seng Gan ·

Due to its rapid response time and a high degree of robustness, the selective fixed-filter active noise control (SFANC) method appears to be a viable candidate for widespread use in a variety of practical active noise control (ANC) systems. In comparison to conventional fixed-filter ANC methods, SFANC can select the pre-trained control filters for different types of noise. Deep learning technologies, thus, can be used in SFANC methods to enable a more flexible selection of the most appropriate control filters for attenuating various noises. Furthermore, with the assistance of a deep neural network, the selecting strategy can be learned automatically from noise data rather than through trial and error, which significantly simplifies and improves the practicability of ANC design. Therefore, this paper investigates the performance of SFANC based on different one-dimensional and two-dimensional convolutional neural networks. Additionally, we conducted comparative analyses of several network training strategies and discovered that fine-tuning could improve selection performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here