PathologyGAN: Learning deep representations of cancer tissue

Histopathological images of tumors contain abundant information about how tumors grow and how they interact with their micro-environment. Better understanding of tissue phenotypes in these images could reveal novel determinants of pathological processes underlying cancer, and in turn improve diagnosis and treatment options. Advances of Deep learning makes it ideal to achieve those goals, however, its application is limited by the cost of high quality labels from patients data. Unsupervised learning, in particular, deep generative models with representation learning properties provides an alternative path to further understand cancer tissue phenotypes, capturing tissue morphologies. In this paper, we develop a framework which allows GANs to capture key tissue features and uses these characteristics to give structure to its latent space. To this end, we trained our model on two different datasets, an H&E colorectal cancer tissue from the National Center for Tumor diseases (NCT) and an H&E breast cancer tissue from the Netherlands Cancer Institute (NKI) and Vancouver General Hospital (VGH). Composed of 86 slide images and 576 TMAs respectively. We show that our model generates high quality images, with a FID of 16.65 (breast cancer) and 32.05 (colorectal cancer). We further assess the quality of the images with cancer tissue characteristics (e.g. count of cancer, lymphocytes, or stromal cells), using quantitative information to calculate the FID and showing consistent performance of 9.86. Additionally, the latent space of our model shows an interpretable structure and allows semantic vector operations that translate into tissue feature transformations. Furthermore, ratings from two expert pathologists found no significant difference between our generated tissue images from real ones. The code, images, and pretrained models are available at https://github.com/AdalbertoCq/Pathology-GAN

PDF Abstract MIDL 2019 PDF MIDL 2019 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here