Paleo-Detectors for Galactic Supernova Neutrinos

13 Jun 2019  ·  Sebastian Baum, Thomas D. P. Edwards, Bradley J. Kavanagh, Patrick Stengel, Andrzej K. Drukier, Katherine Freese, Maciej Górski, Christoph Weniger ·

Paleo-detectors are a proposed experimental technique in which one would search for traces of recoiling nuclei in ancient minerals. Natural minerals on Earth are as old as $\mathcal{O}(1)\,$Gyr and, in many minerals, the damage tracks left by recoiling nuclei are also preserved for timescales long compared to 1 Gyr once created. Thus, even reading out relatively small target samples of order 100 g, paleo-detectors would allow one to search for very rare events thanks to the large exposure, $\varepsilon \sim 100\,{\rm g}\,{\rm Gyr} = 10^5\,{\rm t}\,{\rm yr}$. Here, we explore the potential of paleo-detectors to measure nuclear recoils induced by neutrinos from galactic core collapse supernovae. We find that they would not only allow for a direct measurement of the average core collapse supernova rate in the Milky Way, but would also contain information about the time-dependence of the local supernova rate over the past $\sim$1 Gyr. Since the supernova rate is thought to be directly proportional to the star formation rate, such a measurement would provide a determination of the local star formation history. We investigate the sensitivity of paleo-detectors to both a smooth time evolution and an enhancement of the core collapse supernova rate on relatively short timescales, as would be expected for a starburst period in the local group.

PDF Abstract

Categories


Astrophysics of Galaxies Cosmology and Nongalactic Astrophysics High Energy Physics - Phenomenology