Overcoming Beam Squint in Dual-Wideband mmWave MIMO Channel Estimation: A Bayesian Multi-Band Sparsity Approach

19 Jun 2023  ·  Le Xu, Lei Cheng, Ngai Wong, Yik-Chung Wu, H. Vincent Poor ·

The beam squint effect, which manifests in different steering matrices in different sub-bands, has been widely considered a challenge in millimeter wave (mmWave) multiinput multi-output (MIMO) channel estimation. Existing methods either require specific forms of the precoding/combining matrix, which restrict their general practicality, or simply ignore the beam squint effect by only making use of a single sub-band for channel estimation. Recognizing that different steering matrices are coupled by the same set of unknown channel parameters, this paper proposes to exploit the common sparsity structure of the virtual channel model so that signals from different subbands can be jointly utilized to enhance the performance of channel estimation. A probabilistic model is built to induce the common sparsity in the spatial domain, and the first-order Taylor expansion is adopted to get rid of the grid mismatch in the dictionaries. To learn the model parameters, a variational expectation-maximization (EM) algorithm is derived, which automatically obtains the balance between the likelihood function and the common sparsity prior information, and is applicable to arbitrary forms of precoding/combining matrices. Simulation results show the superior estimation accuracy of the proposed algorithm over existing methods under different noise powers and system configurations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here