Otter-Knowledge: benchmarks of multimodal knowledge graph representation learning from different sources for drug discovery

Recent research on predicting the binding affinity between drug molecules and proteins use representations learned, through unsupervised learning techniques, from large databases of molecule SMILES and protein sequences. While these representations have significantly enhanced the predictions, they are usually based on a limited set of modalities, and they do not exploit available knowledge about existing relations among molecules and proteins. In this study, we demonstrate that by incorporating knowledge graphs from diverse sources and modalities into the sequences or SMILES representation, we can further enrich the representation and achieve state-of-the-art results for drug-target binding affinity prediction in the established Therapeutic Data Commons (TDC) benchmarks. We release a set of multimodal knowledge graphs, integrating data from seven public data sources, and containing over 30 million triples. Our intention is to foster additional research to explore how multimodal knowledge enhanced protein/molecule embeddings can improve prediction tasks, including prediction of binding affinity. We also release some pretrained models learned from our multimodal knowledge graphs, along with source code for running standard benchmark tasks for prediction of biding affinity.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here