Orthogonal and Non-Orthogonal Signal Representations Using New Transformation Matrices Having NPM Structure

20 Jun 2021  ·  Shaik Basheeruddin Shah, Vijay Kumar Chakka, Arikatla Satyanarayana Reddy ·

In this paper, we introduce two types of real-valued sums known as Complex Conjugate Pair Sums (CCPSs) denoted as CCPS$^{(1)}$ and CCPS$^{(2)}$, and discuss a few of their properties. Using each type of CCPSs and their circular shifts, we construct two non-orthogonal Nested Periodic Matrices (NPMs). As NPMs are non-singular, this introduces two non-orthogonal transforms known as Complex Conjugate Periodic Transforms (CCPTs) denoted as CCPT$^{(1)}$ and CCPT$^{(2)}$. We propose another NPM, which uses both types of CCPSs such that its columns are mutually orthogonal, this transform is known as Orthogonal CCPT (OCCPT). After a brief study of a few OCCPT properties like periodicity, circular shift, etc., we present two different interpretations of it. Further, we propose a Decimation-In-Time (DIT) based fast computation algorithm for OCCPT (termed as FOCCPT), whenever the length of the signal is equal to $2^v,\ v{\in} \mathbb{N}$. The proposed sums and transforms are inspired by Ramanujan sums and Ramanujan Period Transform (RPT). Finally, we show that the period (both divisor and non-divisor) and frequency information of a signal can be estimated using the proposed transforms with a significant reduction in the computational complexity over Discrete Fourier Transform (DFT).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here