Optimizing Over Radial Kernels on Compact Manifolds

We tackle the problem of optimizing over all possible positive definite radial kernels on Riemannian manifolds for classification. Kernel methods on Riemannian manifolds have recently become increasingly popular in computer vision. However, the number of known positive definite kernels on manifolds remain very limited. Furthermore, most kernels typically depend on at least one parameter that needs to be tuned for the problem at hand. A poor choice of kernel, or of parameter value, may yield significant performance drop-off. Here, we show that positive definite radial kernels on the unit n-sphere, the Grassmann manifold and Kendall's shape manifold can be expressed in a simple form whose parameters can be automatically optimized within a support vector machine framework. We demonstrate the benefits of our kernel learning algorithm on object, face, action and shape recognition.

PDF Abstract CVPR 2014 PDF CVPR 2014 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here