Optimal Time-Invariant Distributed Formation Tracking for Second-Order Multi-Agent Systems

23 Jul 2023  ·  Marco Fabris, Giulio Fattore, Angelo Cenedese ·

This paper addresses the optimal time-invariant formation tracking problem with the aim of providing a distributed solution for multi-agent systems with second-order integrator dynamics. In the literature, most of the results related to multi-agent formation tracking do not consider energy issues while investigating distributed feedback control laws. In order to account for this crucial design aspect, we contribute by formalizing and proposing a solution to an optimization problem that encapsulates trajectory tracking, distance-based formation control, and input energy minimization, through a specific and key choice of potential functions in the optimization cost. To this end, we show how to compute the inverse dynamics in a centralized fashion by means of the Projector-Operator-based Newton's method for Trajectory Optimization (PRONTO) and, more importantly, we exploit such an offline solution as a general reference to devise a stabilizing online distributed control law. Finally, numerical examples involving a cubic formation following a straight path in the 3D space are provided to validate the proposed control strategies.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here