Optimal Sequencing and Motion Control in a Roundabout with Safety Guarantees

14 Mar 2024  ·  Yingqing Chen, Christos G. Cassandras, Kaiyuan Xu ·

This paper develops a controller for Connected and Automated Vehicles (CAVs) traversing a single-lane roundabout. The controller simultaneously determines the optimal sequence and associated optimal motion control jointly minimizing travel time and energy consumption while providing speed-dependent safety guarantees, as well as satisfying velocity and acceleration constraints. This is achieved by integrating (a) Model Predictive Control (MPC) to enable receding horizon optimization with (b) Control Lyapunov-Barrier Functions (CLBFs) to guarantee convergence to a safe set in finite time, thus providing an extended stability region compared to the use of classic Control Barrier Functions (CBFs). The proposed MPC-CLBF framework addresses both infeasibility and myopic control issues commonly encountered when controlling CAVs over multiple interconnected control zones in a traffic network, which has been a limitation of prior work on CAVs going through roundabouts, while still providing safety guarantees. Simulations under varying traffic demands demonstrate the controller's effectiveness and stability.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here