Optimal Schemes for Discrete Distribution Estimation under Locally Differential Privacy

2 Feb 2017  ·  Min Ye, Alexander Barg ·

We consider the minimax estimation problem of a discrete distribution with support size $k$ under privacy constraints. A privatization scheme is applied to each raw sample independently, and we need to estimate the distribution of the raw samples from the privatized samples. A positive number $\epsilon$ measures the privacy level of a privatization scheme. For a given $\epsilon,$ we consider the problem of constructing optimal privatization schemes with $\epsilon$-privacy level, i.e., schemes that minimize the expected estimation loss for the worst-case distribution. Two schemes in the literature provide order optimal performance in the high privacy regime where $\epsilon$ is very close to $0,$ and in the low privacy regime where $e^{\epsilon}\approx k,$ respectively. In this paper, we propose a new family of schemes which substantially improve the performance of the existing schemes in the medium privacy regime when $1\ll e^{\epsilon} \ll k.$ More concretely, we prove that when $3.8 < \epsilon <\ln(k/9) ,$ our schemes reduce the expected estimation loss by $50\%$ under $\ell_2^2$ metric and by $30\%$ under $\ell_1$ metric over the existing schemes. We also prove a lower bound for the region $e^{\epsilon} \ll k,$ which implies that our schemes are order optimal in this regime.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here