Finite-Sum Smooth Optimization with SARAH

The total complexity (measured as the total number of gradient computations) of a stochastic first-order optimization algorithm that finds a first-order stationary point of a finite-sum smooth nonconvex objective function $F(w)=\frac{1}{n} \sum_{i=1}^n f_i(w)$ has been proven to be at least $\Omega(\sqrt{n}/\epsilon)$ for $n \leq \mathcal{O}(\epsilon^{-2})$ where $\epsilon$ denotes the attained accuracy $\mathbb{E}[ \|\nabla F(\tilde{w})\|^2] \leq \epsilon$ for the outputted approximation $\tilde{w}$ (Fang et al., 2018). In this paper, we provide a convergence analysis for a slightly modified version of the SARAH algorithm (Nguyen et al., 2017a;b) and achieve total complexity that matches the lower-bound worst case complexity in (Fang et al., 2018) up to a constant factor when $n \leq \mathcal{O}(\epsilon^{-2})$ for nonconvex problems. For convex optimization, we propose SARAH++ with sublinear convergence for general convex and linear convergence for strongly convex problems; and we provide a practical version for which numerical experiments on various datasets show an improved performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here