One-Step Multiview Fuzzy Clustering With Collaborative Learning Between Common and Specific Hidden Space Information

Multiview data are widespread in real-world applications, and multiview clustering is a commonly used technique to effectively mine the data. Most of the existing algorithms perform multiview clustering by mining the commonly hidden space between views. Although this strategy is effective, there are two challenges that still need to be addressed to further improve the performance. First, how to design an efficient hidden space learning method so that the learned hidden spaces contain both shared and specific information of multiview data. Second, how to design an efficient mechanism to make the learned hidden space more suitable for the clustering task. In this study, a novel one-step multiview fuzzy clustering (OMFC-CS) method is proposed to address the two challenges by collaborative learning between the common and specific space information. To tackle the first challenge, we propose a mechanism to extract the common and specific information simultaneously based on matrix factorization. For the second challenge, we design a one-step learning framework to integrate the learning of common and specific spaces and the learning of fuzzy partitions. The integration is achieved in the framework by performing the two learning processes alternately and thereby yielding mutual benefit. Furthermore, the Shannon entropy strategy is introduced to obtain the optimal views weight assignment during clustering. The experimental results based on benchmark multiview datasets demonstrate that the proposed OMFC-CS outperforms many existing methods.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here