On the use of higher-order tensors to model muscle synergies

3 Jul 2020  ·  Ahmed Ebied, Loukianos Spyrou, Eli Kinney-Lang, Javier Escudero ·

The muscle synergy concept provides the best framework to understand motor control and it has been recently utilised in many applications such as prosthesis control. The current muscle synergy model relies on decomposing multi-channel surface Electromyography (EMG) signals into a synergy matrix (spatial mode) and its weighting function (temporal mode). This is done using several matrix factorisation techniques, with Non-negative matrix factorisation (NMF) being the most prominent method. Here, we introduce a 4th-order tensor muscle synergy model that extends the current state of the art by taking spectral information and repetitions (movements) into account. This adds more depth to the model and provides more synergistic information. In particular, we illustrate a proof-of-concept study where the Tucker3 tensor decomposition model was applied to a subset of wrist movements from the Ninapro database. The results showed the potential of Tucker3 tensor factorisation in finding patterns of muscle synergies with information about the movements and highlights the differences between the current and proposed model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here