On the Role of Reflectarrays for Interplanetary Links

1 May 2024  ·  Eray Guven, Pablo Camacho, Elham Baladi, Gunes Karabulut Kurt ·

Interplanetary links (IPL) serve as crucial enablers for space exploration, facilitating secure and adaptable space missions. An integrated IPL with inter-satellite communication (IP-ISL) establishes a unified deep space network, expanding coverage and reducing atmospheric losses. The challenges, including irregularities in charged density, hardware impairments, and hidden celestial body brightness are analyzed with a reflectarray-based IP-ISL between Earth and Moon orbiters. It is observed that $10^{-8}$ order severe hardware impairments with intense solar plasma density drops an ideal system's spectral efficiency (SE) from $\sim\!38~\textrm{(bit/s)/Hz}$ down to $0~\textrm{(bit/s)/Hz}$. An ideal full angle of arrival fluctuation recovery with full steering range achieves $\sim\!20~\textrm{(bit/s)/Hz}$ gain and a limited beamsteering with a numerical reflectarray design achieves at least $\sim\!1~\textrm{(bit/s)/Hz}$ gain in severe hardware impairment cases.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods