Analysis of a Canonical Labeling Algorithm for the Alignment of Correlated Erdős-Rényi Graphs

25 Apr 2018  ·  Osman Emre Dai, Daniel Cullina, Negar Kiyavash, Matthias Grossglauser ·

Graph alignment in two correlated random graphs refers to the task of identifying the correspondence between vertex sets of the graphs. Recent results have characterized the exact information-theoretic threshold for graph alignment in correlated Erd\H{o}s-R\'enyi graphs. However, very little is known about the existence of efficient algorithms to achieve graph alignment without seeds. In this work we identify a region in which a straightforward $O(n^{11/5} \log n )$-time canonical labeling algorithm, initially introduced in the context of graph isomorphism, succeeds in aligning correlated Erd\H{o}s-R\'enyi graphs. The algorithm has two steps. In the first step, all vertices are labeled by their degrees and a trivial minimum distance alignment (i.e., sorting vertices according to their degrees) matches a fixed number of highest degree vertices in the two graphs. Having identified this subset of vertices, the remaining vertices are matched using a alignment algorithm for bipartite graphs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here