On the Importance of Sampling in Training GCNs: Convergence Analysis and Variance Reduction

1 Jan 2021  ·  Weilin Cong, Morteza Ramezani, Mehrdad Mahdavi ·

Graph Convolutional Networks (GCNs) have achieved impressive empirical advancement across a wide variety of graph-related applications. Despite their great success, training GCNs on large graphs suffers from computational and memory issues. A potential path to circumvent these obstacles is sampling-based methods, where at each layer a subset of nodes is sampled. Although recent studies have empirically demonstrated the effectiveness of sampling-based methods, these works lack theoretical convergence guarantees under realistic settings and cannot fully leverage the information of evolving parameters during optimization. In this paper, we describe and analyze a general \textbf{\textit{doubly variance reduction}} schema that can accelerate any sampling method under the memory budget. The motivating impetus for the proposed schema is a careful analysis for the variance of sampling methods where it is shown that the induced variance can be decomposed into node embedding approximation variance (\emph{zeroth-order variance}) during forward propagation and layerwise-gradient variance (\emph{first-order variance}) during backward propagation. We theoretically analyze the convergence of the proposed schema and show that it enjoys an $\mathcal{O}(1/T)$ convergence rate. We complement our theoretical results by integrating the proposed schema in different sampling methods and applying them to different large real-world graphs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here