On the Global Convergence of Natural Actor-Critic with Two-layer Neural Network Parametrization

18 Jun 2023  ·  Mudit Gaur, Amrit Singh Bedi, Di Wang, Vaneet Aggarwal ·

Actor-critic algorithms have shown remarkable success in solving state-of-the-art decision-making problems. However, despite their empirical effectiveness, their theoretical underpinnings remain relatively unexplored, especially with neural network parametrization. In this paper, we delve into the study of a natural actor-critic algorithm that utilizes neural networks to represent the critic. Our aim is to establish sample complexity guarantees for this algorithm, achieving a deeper understanding of its performance characteristics. To achieve that, we propose a Natural Actor-Critic algorithm with 2-Layer critic parametrization (NAC2L). Our approach involves estimating the $Q$-function in each iteration through a convex optimization problem. We establish that our proposed approach attains a sample complexity of $\tilde{\mathcal{O}}\left(\frac{1}{\epsilon^{4}(1-\gamma)^{4}}\right)$. In contrast, the existing sample complexity results in the literature only hold for a tabular or linear MDP. Our result, on the other hand, holds for countable state spaces and does not require a linear or low-rank structure on the MDP.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here