On Linear Time-Invariant Systems Analysis via A Single Trajectory: A Linear Programming Approach

21 Sep 2021  ·  Hassan Abdelraouf, Fahad Albalawi, Eric Feron ·

In this note, a novel methodology that can extract a number of analysis results for linear time-invariant systems (LTI) given only a single trajectory of the considered system is proposed. The superiority of the proposed technique relies on the fact that it provides an automatic and formal way to obtain valuable information about the controlled system by only having access to a single trajectory over a finite period of time (i.e., the system dynamics is assumed to be unknown). At first, we characterize the stability region of LTI systems given only a single trajectory dataset by constructing the associated Lyapunov function of the system. The Lyapunov function is found by formulating and solving a linear programming (LP) problem. Then, we extend the same methodology to a variety of essential analysis results for LTI systems such as deriving bounds on the output energy, deriving bounds on output peak, deriving $\mathbf{L}_2$ and RMS gains. To illustrate the efficacy of the proposed data-driven paradigm, a comparison analysis between the learned LTI system metrics and the true ones is provided.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here