On Learning for Ambiguous Chance Constrained Problems

31 Dec 2023  ·  A Ch Madhusudanarao, Rahul Singh ·

We study chance constrained optimization problems $\min_x f(x)$ s.t. $P(\left\{ \theta: g(x,\theta)\le 0 \right\})\ge 1-\epsilon$ where $\epsilon\in (0,1)$ is the violation probability, when the distribution $P$ is not known to the decision maker (DM). When the DM has access to a set of distributions $\mathcal{U}$ such that $P$ is contained in $\mathcal{U}$, then the problem is known as the ambiguous chance-constrained problem \cite{erdougan2006ambiguous}. We study ambiguous chance-constrained problem for the case when $\mathcal{U}$ is of the form $\left\{\mu:\frac{\mu (y)}{\nu(y)}\leq C, \forall y\in\Theta, \mu(y)\ge 0\right\}$, where $\nu$ is a ``reference distribution.'' We show that in this case the original problem can be ``well-approximated'' by a sampled problem in which $N$ i.i.d. samples of $\theta$ are drawn from $\nu$, and the original constraint is replaced with $g(x,\theta_i)\le 0,~i=1,2,\ldots,N$. We also derive the sample complexity associated with this approximation, i.e., for $\epsilon,\delta>0$ the number of samples which must be drawn from $\nu$ so that with a probability greater than $1-\delta$ (over the randomness of $\nu$), the solution obtained by solving the sampled program yields an $\epsilon$-feasible solution for the original chance constrained problem.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here