On Efficient Online Imitation Learning via Classification

26 Sep 2022  ·  Yichen Li, Chicheng Zhang ·

Imitation learning (IL) is a general learning paradigm for tackling sequential decision-making problems. Interactive imitation learning, where learners can interactively query for expert demonstrations, has been shown to achieve provably superior sample efficiency guarantees compared with its offline counterpart or reinforcement learning. In this work, we study classification-based online imitation learning (abbrev. $\textbf{COIL}$) and the fundamental feasibility to design oracle-efficient regret-minimization algorithms in this setting, with a focus on the general nonrealizable case. We make the following contributions: (1) we show that in the $\textbf{COIL}$ problem, any proper online learning algorithm cannot guarantee a sublinear regret in general; (2) we propose $\textbf{Logger}$, an improper online learning algorithmic framework, that reduces $\textbf{COIL}$ to online linear optimization, by utilizing a new definition of mixed policy class; (3) we design two oracle-efficient algorithms within the $\textbf{Logger}$ framework that enjoy different sample and interaction round complexity tradeoffs, and conduct finite-sample analyses to show their improvements over naive behavior cloning; (4) we show that under the standard complexity-theoretic assumptions, efficient dynamic regret minimization is infeasible in the $\textbf{Logger}$ framework. Our work puts classification-based online imitation learning, an important IL setup, into a firmer foundation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here