On Degeneracy Issues in Multi-parametric Programming and Critical Region Exploration based Distributed Optimization in Smart Grid Operations

2 Apr 2023  ·  Haitian Liu, Ye Guo, Hao liu ·

Improving renewable energy resource utilization efficiency is crucial to reducing carbon emissions, and multi-parametric programming has provided a systematic perspective in conducting analysis and optimization toward this goal in smart grid operations. This paper focuses on two aspects of interest related to multi-parametric linear/quadratic programming (mpLP/QP). First, we study degeneracy issues of mpLP/QP. A novel approach to deal with degeneracies is proposed to find all critical regions containing the given parameter. Our method leverages properties of the multi-parametric linear complementary problem, vertex searching technique, and complementary basis enumeration. Second, an improved critical region exploration (CRE) method to solve distributed LP/QP is proposed under a general mpLP/QP-based formulation. The improved CRE incorporates the proposed approach to handle degeneracies. A cutting plane update and an adaptive stepsize scheme are also integrated to accelerate convergence under different problem settings. The computational efficiency is verified on multi-area tie-line scheduling problems with various testing benchmarks and initial states.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here