Observer-based Event-triggered Boundary Control of the One-phase Stefan Problem

2 Oct 2022  ·  Bhathiya Rathnayake, Mamadou Diagne ·

This paper provides an observer-based event-triggered boundary control strategy for the one-phase Stefan problem using the position and velocity measurements of the moving interface. The infinite-dimensional backstepping approach is used to design the underlying observer and controller. For the event-triggered implementation of the continuous-time observer-based controller, a dynamic event triggering condition is proposed. The triggering condition determines the times at which the control input needs to be updated. In between events, the control input is applied in a \textit{Zero-Order-Hold} fashion. It is shown that the dwell-time between two triggering instances is uniformly bounded below excluding \textit{Zeno behavior}. Under the proposed event-triggered boundary control approach, the well-posedness of the closed-loop system along with certain model validity conditions is provided. Further, using Lyapunov approach, the global exponential convergence of the closed-loop system to the setpoint is proved. A simulation example is provided to illustrate the theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here