Paper

Object Proposal with Kernelized Partial Ranking

Object proposals are an ensemble of bounding boxes with high potential to contain objects. In order to determine a small set of proposals with a high recall, a common scheme is extracting multiple features followed by a ranking algorithm which however, incurs two major challenges: {\bf 1)} The ranking model often imposes pairwise constraints between each proposal, rendering the problem away from an efficient training/testing phase; {\bf 2)} Linear kernels are utilized due to the computational and memory bottleneck of training a kernelized model. In this paper, we remedy these two issues by suggesting a {\em kernelized partial ranking model}. In particular, we demonstrate that {\bf i)} our partial ranking model reduces the number of constraints from $O(n^2)$ to $O(nk)$ where $n$ is the number of all potential proposals for an image but we are only interested in top-$k$ of them that has the largest overlap with the ground truth; {\bf ii)} we permit non-linear kernels in our model which is often superior to the linear classifier in terms of accuracy. For the sake of mitigating the computational and memory issues, we introduce a consistent weighted sampling~(CWS) paradigm that approximates the non-linear kernel as well as facilitates an efficient learning. In fact, as we will show, training a linear CWS model amounts to learning a kernelized model. Extensive experiments demonstrate that equipped with the non-linear kernel and the partial ranking algorithm, recall at top-$k$ proposals can be substantially improved.

Results in Papers With Code
(↓ scroll down to see all results)