Novel Active Sensing and Inference for mmWave Beam Alignment Using Single RF Chain Systems

11 Apr 2024  ·  Rohan R. Pote, Bhaskar D. Rao ·

We propose a novel sensing approach for the beam alignment problem in millimeter wave systems using a single Radio Frequency (RF) chain. Conventionally, beam alignment using a single phased array involves comparing beamformer output power across different spatial regions. This incurs large training overhead due to the need to perform the beam scan operation. The proposed Synthesis of Virtual Array Manifold (SVAM) sensing methodology is inspired from synthetic aperture radar systems and realizes a virtual array geometry over temporal measurements. We demonstrate the benefits of SVAM using Cram\'er-Rao bound (CRB) analysis over schemes that repeat beam pattern to boost signal-to-noise (SNR) ratio. We also showcase versatile applicability of the proposed SVAM sensing by incorporating it within existing beam alignment procedures that assume perfect knowledge of the small-scale fading coefficient. We further consider the practical scenario wherein we estimate the fading coefficient and propose a novel beam alignment procedure based on efficient computation of an approximate posterior density on dominant path angle. We provide numerical experiments to study the impact of parameters involved in the procedure. The performance of the proposed sensing and beam alignment algorithm is empirically observed to approach the fading coefficient-perfectly known performance, even at low SNR.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here