Nonparametric Spatio-Temporal Joint Probabilistic Data Association Coupled Filter and Interfering Extended Target Tracking

22 Aug 2023  ·  Behzad Akbari, Haibin Zhu, Ya-Jun Pan, R. Tharmarasa ·

Extended target tracking estimates the centroid and shape of the target in space and time. In various situations where extended target tracking is applicable, the presence of multiple targets can lead to interference, particularly when they maneuver behind one another in a sensor like a camera. Nonetheless, when dealing with multiple extended targets, there's a tendency for them to share similar shapes within a group, which can enhance their detectability. For instance, the coordinated movement of a cluster of aerial vehicles might cause radar misdetections during their convergence or divergence. Similarly, in the context of a self-driving car, lane markings might split or converge, resulting in inaccurate lane tracking detections. A well-known joint probabilistic data association coupled (JPDAC) filter can address this problem in only a single-point target tracking. A variation of JPDACF was developed by introducing a nonparametric Spatio-Temporal Joint Probabilistic Data Association Coupled Filter (ST-JPDACF) to address the problem for extended targets. Using different kernel functions, we manage the dependency of measurements in space (inside a frame) and time (between frames). Kernel functions are able to be learned using a limited number of training data. This extension can be used for tracking the shape and dynamics of nonparametric dependent extended targets in clutter when targets share measurements. The proposed algorithm was compared with other well-known supervised methods in the interfering case and achieved promising results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here